

Optical Kerr effect

PHYS-607: Nonlinear fibre (waveguide) optics

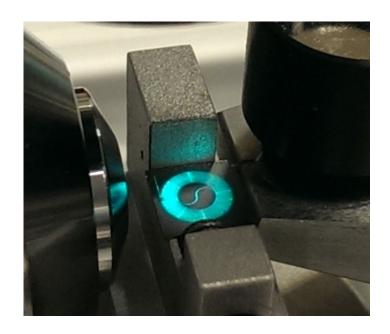
■ Ecole Polytechnique Fédérale de Lausanne

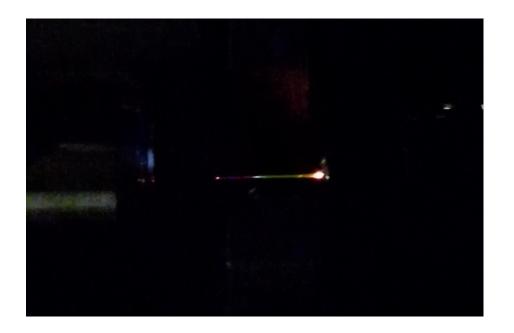
Nonlinear optics

The electric response of any material becomes nonlinear with sufficiently large electromagnetic fields

A signature of nonlinearity is the generation of new frequencies It enables a light stream to influence other light streams

Opens many possibilities for optical processing





A quick time line

1875: John Kerr reports the first nonlinear effect: double refraction in solid and liquid dielectrics in a strong electrostatic field.

Kerr, John (1875). "A new relation between electricity and light: Dielectrified media birefringent". Philosophical Magazine. 4. **50** (332)

1960: T.H. Maiman demonstrates the first working laser

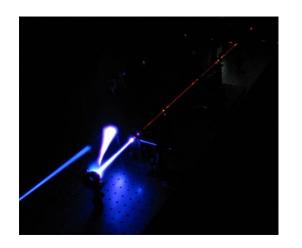
1961: Franken et al. make the first observation of wavelength conversion by second harmonic generation

1962: Terhune et al observe third harmonic generation

1973: Hasegawa et al. predict the generation of solitons in fibers

1980: Mollenauer et al. experimentally demonstrate solitons in fibers

... many more, nonlinear optics is present in many systems



Applications

Laser and optical sources (green laser pointer, Modelocked, Q-switched, regenerative lasers ...)

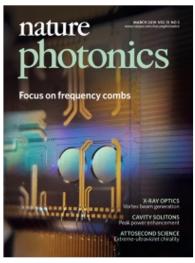
Ultra fast optics (Pulse compression, pulse characterization....)

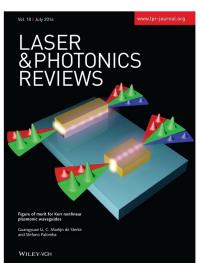
Wavelength conversion (supercontinuum, wave mixing ...)

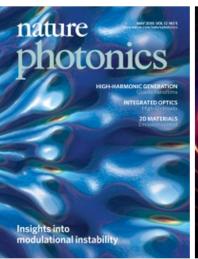
Optical communication (amplification, regeneration, dispersion compensation ...)

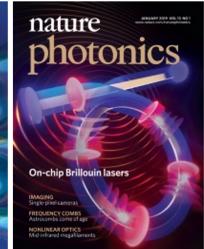
Imaging and health sciences (optical coherence tomography, nonlinear fluorescence ...)

Remote applications (LiDAR ...)

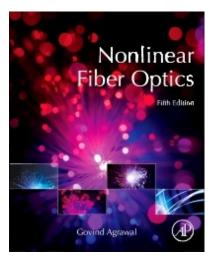




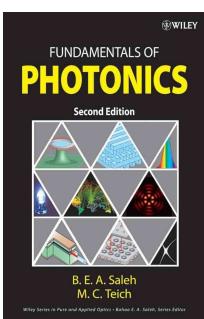


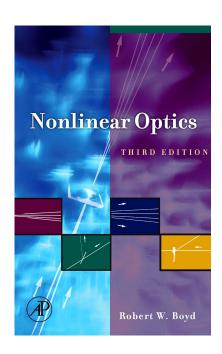


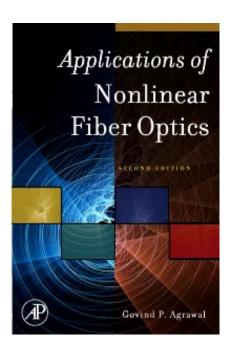
Textbook



G. P. Agrawal, Nonlinear fiber optics, 5th edition, Academic Press, 2013







Sign convention

Our electric field definition is the one used in Agrawal's book, with a negative carrier frequency.

$$\mathbf{E}(z, t) = \frac{1}{2} A_0(t) \exp\left[j\left(-\underline{\omega_0}t + \beta z\right)\right] + c.c.$$
Envelope (real) Phase

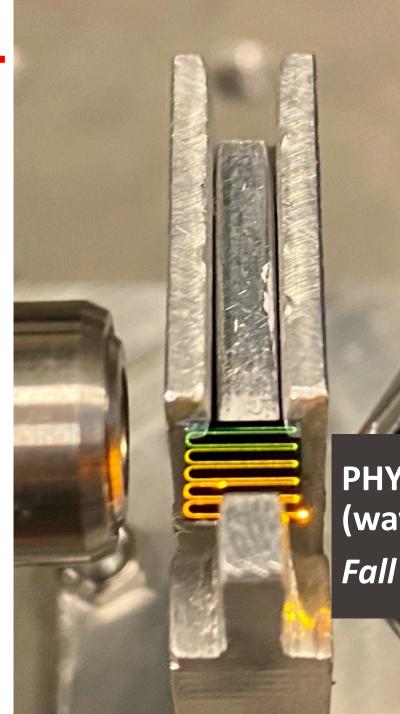
In this case the Fourier transform pair is defined as:

$$\widetilde{U}(\omega) = \int_{-\infty}^{\infty} U(T) \exp(j\omega T) dT \qquad U(T) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \widetilde{U}(\omega) \exp(-j\omega T) d\omega$$

 $\omega(t) = -\frac{\partial \varphi(t)}{\partial t}$ The instantaneous frequency as:

Outline

- **Module 1** Overview of third order nonlinear parametric processes
- **Module 2** Self phase modulation
- **Module 3** Nonlinear pulse propagation
- Module 4 Solitons
- **Module 5** Modulation instability
- **Module 6** Solving the NLSE
- Module 7 Multiwavelength effects: cross phase modulation and four-wave mixing
- **Module 8** Parametric amplification
- **Module 9** Supercontinuum generation
- (Extra Self steepening)



Optical Kerr effect

Module 1 - Overview of 3rd order nonlinear parametric processes

PHYS-607: Nonlinear fibre (waveguide) optics

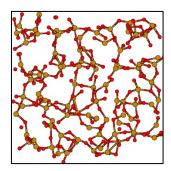
Fall 2022

■ Ecole
Polytechnique
Fédérale de
Lausanne

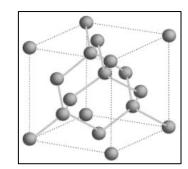
Overview of processes in a third-order nonlinear medium

Here we will examine the optical properties of a nonlinear medium in which the 3rd order nonlinearity dominates.

This is the case for materials which are centrosymmetric on the macroscopic scale.

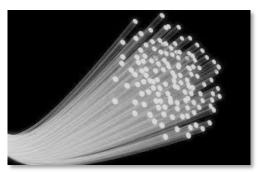


$$<\chi^{(2)}> = 0$$

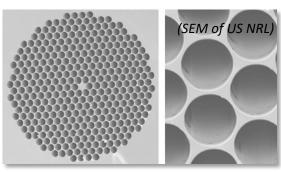


$$\chi^{(2)} = 0$$

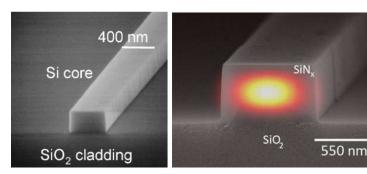
$$\mathbf{P} = \varepsilon_0 \chi^{(1)} \mathbf{E} + \varepsilon_0 \chi^{(2)} \mathbf{E}^2 + \varepsilon_0 \chi^{(3)} \mathbf{E}^3$$



Step index fiber



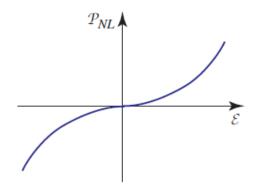
Microstructured fiber



Silicon compound waveguides

Nonlinear propagation

$$\mathbf{P}_{NL} = \varepsilon_0 \chi^{(3)} \mathbf{E}^3$$



Consider a single harmonic field:

$$\mathbf{E}(t) = \operatorname{Re}[E(t) \exp(-j\omega t)] = \frac{1}{2}[E(t) \exp(-j\omega t) + c.c]$$

The resulting nonlinear polarization is:

$$\mathbf{P}_{NL}(t) = \frac{1}{2} \left[P_{NL,\omega} \exp(-j\omega t) + P_{NL,3\omega} \exp(-j3\omega t) c.c \right]$$

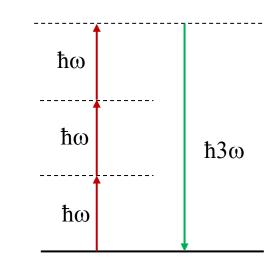
$$P_{NL,\omega}=rac{3}{4}arepsilon_0\chi^{(3)}E^2E^*$$
 ω frequency source $P_{NL,3\omega}=rac{1}{4}arepsilon_0\chi^{(3)}E^3$ 3ω frequency source

Third harmonic generation

$$\mathbf{P}_{NL}(t) = \frac{1}{2} \left[P_{NL,\omega} \exp(-j\omega t) + P_{NL,3\omega} \exp(-j3\omega t) c. c \right]$$

$$P_{NL,\omega} = \frac{3}{4} \varepsilon_0 \chi^{(3)} E^2 E^*$$

$$P_{NL,3\omega} = \frac{1}{4} \varepsilon_0 \chi^{(3)} E^3$$



The 3rd harmonic generation is difficult to achieve, since the source term must propagate at the same velocity as the field term \Rightarrow $3\beta_{\omega} = \beta_{3\omega}$

Pertubation on the ω wave

$$P_{NL,\omega} = \frac{3}{4} \varepsilon_0 \chi^{(3)} E^2 E^*$$

$$P_{NL,\omega} = \frac{3}{4} \varepsilon_0 \chi^{(3)} |E|^2 E$$

$$\propto I = \frac{n\varepsilon_0 c_0}{2} |E|^2$$

This wave induces a change in the real and the imaginary part of the susceptibility χ :

$$\mathbf{P}(t) = \varepsilon_0 \chi^{(1)} \mathbf{E}(t) + \mathbf{P}_{NL}(t) \approx \varepsilon_0 \chi^{(1)} \mathbf{E}(t) + \varepsilon_0 \Delta \chi \mathbf{E}(t)$$

Nonlinear polarization as a perturbation

with
$$\Delta \chi = \frac{3}{4} \chi^{(3)} |E|^2$$

Pertubation on the ω wave

We know that the complex refractive index is given by $\varepsilon = \underline{\tilde{n}}^2 = 1 + \chi = \left(\tilde{n} + j\frac{\tilde{\alpha}}{2k_0}\right)^2$

This is similar to linear case, except that in this case both refractive index and loss are perturbed:

$$\tilde{n} = n + \Delta n$$
 $\tilde{\alpha} = \alpha + \Delta \alpha$

The change in $\Delta \chi$ thus leads to a change:

$$2n\left(\Delta n + j\frac{\Delta\alpha}{2k_0}\right) = \Delta\chi$$

$$2n\Delta n + jn\frac{\Delta \alpha}{k_0} = \frac{3}{4}\chi^{(3)}|E|^2$$

Pertubation on the ω wave

By identification from
$$2n\Delta n + jn\frac{\Delta\alpha}{k_0} = \frac{3}{4}\chi^{(3)}|E|^2$$
 we get:

$$\Delta n = \frac{3}{8n} \operatorname{Re}(\chi^{(3)}) |E|^2 \equiv n_2 I \qquad \text{with} \qquad n_2 = \frac{3}{4n^2 \varepsilon_0 c_0} \operatorname{Re}(\chi^{(3)})$$

$$\Delta \alpha = \frac{3k_0}{4n} \operatorname{Im}(\chi^{(3)}) |E|^2 \equiv \beta I \qquad \text{with} \qquad \beta = \frac{3k_0}{2n^2 \varepsilon_0 c_0} \operatorname{Im}(\chi^{(3)})$$

$$\left(\text{Recall: } I = \frac{n\varepsilon_0 c_0}{2} |E|^2\right)$$

Kerr effect and nonlinear absorption

$$n(I) = n_0 + n_2 I$$
 n_2 is the nonlinear refractive index

$$\alpha(I) = \alpha_0 + \beta I$$
 β is the nonlinear absorption coefficient

The intensity dependent (real) refractive index is the **Kerr effect**

- $n_2 = 2.7 \ 10^{-20} \ \text{m}^2/\text{W} \text{ in silica (SiO}_2)$
- $n_2 = 6 \cdot 10^{-18} \text{ m}^2/\text{W} \text{ in silicon (Si)}$
- $n_2 = 2.4 \ 10^{-19} \ \text{m}^2/\text{W}$ in silicon nitride (Si₃N₄)

The intensity-dependent absorption is also called two-photon absorption

- It is relatively small for SiO₂, Si₃N₄ and is often ignored
- β = 0.5 cm/GW for Si at 1550 nm

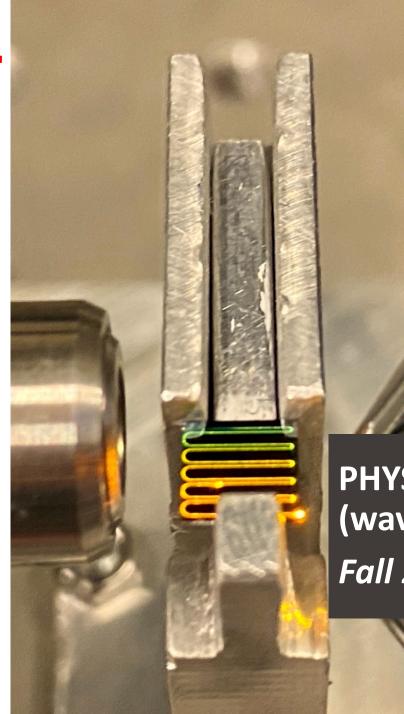
Origin of the nonlinear refractive index n_2

Mechanism	n_2 (m ² /W)	χ ⁽³⁾ ₁₁₁₁ (m²/V²)	Response time (s)
Electronic polarization	10-20	10-22	10 ⁻¹⁵
Molecular orientation	10-18	10-20	10 ⁻¹²
Electrostriction	10-18	10-20	10 ⁻⁹
Thermal effects	10-10	10-12	10-3

There are various origins to the nonlinear refractive index. Those that yield the largest n_2 typically have a slow response time.

In amorphous dielectric materials (silica, soft glasses, etc...) it has essentially 2 origins:

- The non-resonant electronic contribution: weak but is always present and has no observed frequency limit (fast response).
- The refractive index change due to the electrostriction induced by a gradient of intensity: dominant contribution but is observed only in focused beams and has a frequency limit of approx. 300 MHz in standard optical fibres (slow response).



Optical Kerr effect

Module 2 – Self phase modulation

PHYS-607: Nonlinear fibre (waveguide) optics

Fall 2022

■ Ecole Polytechnique Fédérale de Lausanne

Self phase modulation (SPM)

As a result of the Kerr effect, an intensity varying propagating wave can act upon itself and experience an intensity related phase shift.

$$\mathbf{E}(z,t) = \operatorname{Re}\left[\hat{\boldsymbol{e}}A_0[j(-\omega_0 t + \beta z + \phi_0)]\right]$$

$$\beta = nk_0$$

$$\beta = nk_0 \qquad \qquad n(I) = n_0 + n_2 I$$

The accumulated phase of the wave is: $\varphi_a(z) = \beta z$

$$\varphi_a(z) = nk_0z$$

$$\varphi_a(z) = \frac{2\pi}{\lambda_0} (n_0 + n_2 I) z$$

An intensity dependent phase shift builds up along a wave profile: signal is phase modulated by its own intensity – *self phase modulation*

Self phase modulation (SPM)

$$\varphi_a(z) = \frac{2\pi}{\lambda_0} (n_0 + n_2 I) z$$

$$\varphi_a(z) = \varphi_0 + \Delta \varphi(z)$$
 with $\Delta \varphi(z) = \frac{2\pi}{\lambda_0} n_2 Iz$

The total additional phase shift $\varphi_{\rm NL}$ caused by self phase modulation after distance L:

$$\varphi_{NL} = \int_{0}^{L} \Delta \varphi(z) dz = \int_{0}^{L} \frac{2\pi}{\lambda_{0}} n_{2} I(z) dz$$

$$\varphi_{NL} = \frac{2\pi}{\lambda_{0}} \frac{n_{2}}{A_{eff}} \int_{0}^{L} P(z) dz$$

$$\varphi_{NL} = \frac{2\pi}{\lambda_{0}} \frac{n_{2}}{A_{eff}} P_{0} L_{eff}$$

Nonlinear coefficient

A nonlinear coefficient γ is defined such that $\varphi_{NL}=\gamma P_0 L_{eff}$

Therefore
$$\gamma = \frac{2\pi}{\lambda_0} \frac{n_2}{A_{eff}}$$
 in $(W^{-1}km^{-1})$

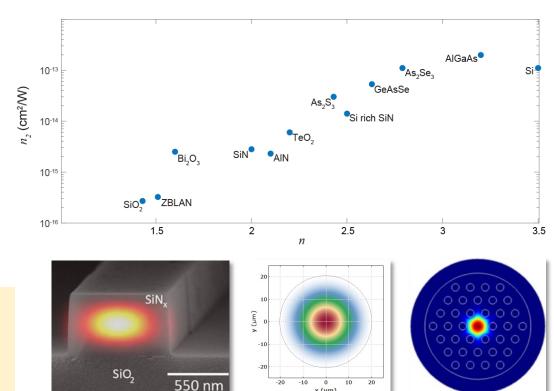
- Depends on (some) material properties: n_2
- Depends on (some) waveguiding properties: $A_{\rm eff}$

A typical value in standard silica fibres is $\gamma \sim 1 \text{ W}^{\text{-}1} \text{ km}^{\text{-}1}$

A nonlinear length can be defined, such as:

$$L_{NL} = \frac{1}{\gamma P_0}$$

• Length for which $\varphi_{NL} = 1$



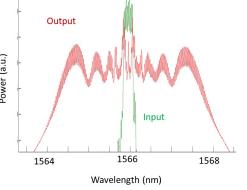
Maximum phase shift and spectral broadening

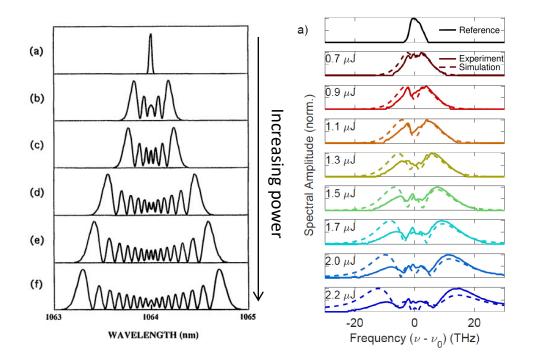
Assume the input signal has a time varying envelope: $A(0,t) = \frac{1}{2}$ Peak power P_p

- The input power is given by: $P_0(t) = |A(0,t)|^2 = P_p|U(0,t)|^2$
- The nonlinear phase shift is : $\varphi_{NL} = \gamma P_p |U(0,t)|^2 L_{eff}$
- The maximum phase shift is: $\varphi_{NL,\max} = \gamma P_p L_{eff}$

$$\varphi_{NL,\max} = \gamma P_p L_{eff}$$

As a result, the spectrum of a wave is broadened with propagation distance





Instantaneous frequency and chirp

The *instantaneous frequency* is given by:

$$\omega = -\frac{d\phi}{dt} = -\frac{d}{dt} \left[-\omega_0 + \frac{2\pi}{\lambda_0} (n_0 + n_2 I) L_{eff} + \phi_0 \right]$$

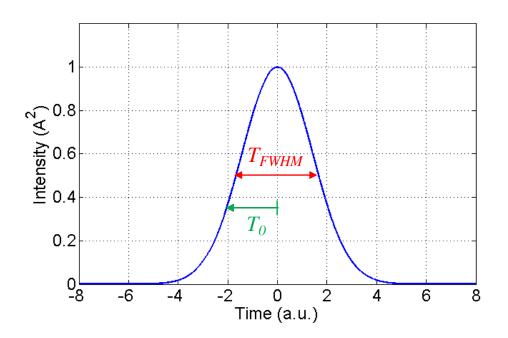
$$\omega = \omega_0 - \frac{2\pi}{\lambda_0} n_2 L_{eff} \frac{dI}{dt}$$

The difference from central value is : $\delta\omega=-\gamma L_{eff}\frac{dP_0}{dt}=-\frac{d\varphi_{NL}}{dt}$

• The time dependence of $\delta\omega(t)$ is referred to as **frequency chirp**

Induced nonlinear chirp

Example of an unchirped input Gaussian pulse:



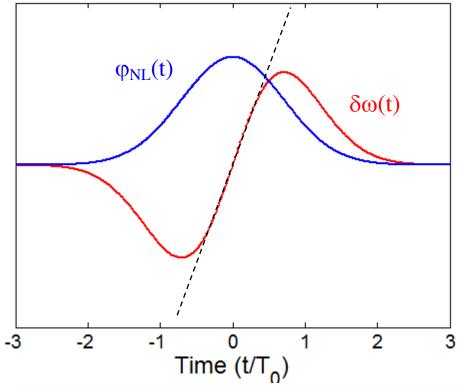
$$A(0,t) = \sqrt{P_p} \exp\left[-\frac{1}{2} \left(\frac{t}{T_0}\right)^2\right]$$

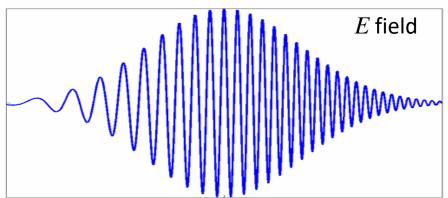
$$P_0(t) = |A(0,t)|^2 = P_p \exp\left[-\left(\frac{t}{T_0}\right)^2\right]$$

$$arphi_{NL} = \gamma P_p \, \exp\left[-\left(rac{t}{T_0}
ight)^2
ight] L_{eff}$$
 Nonlinear phase shift

$$\delta\omega = 2\gamma P_p \, \frac{t}{T_0^2} \exp\left[-\left(\frac{t}{T_0}\right)^2\right] L_{eff} \quad \text{Induced nonlinear chirp}$$

SPM impact on pulse





Nonlinear phase shift φ_{NL} is directly proportional to $|A(0,t)|^2$

Temporal variation identical to pulse shape

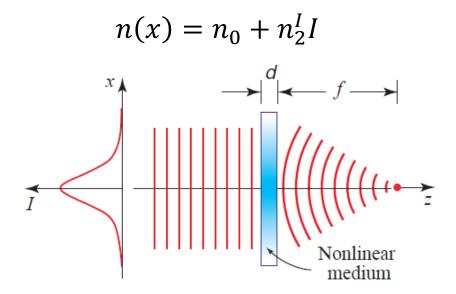
Induced chirp is negative near the leading edge and becomes positive

- When intensity grows, the frequency shifts to the red,
- When intensity decreases, the frequency shifts to the blue.
- Linear up chirp over a large central region

Beam self focussing

Another interesting effect associated with SPM is self-focusing. Consider the beam of light in space transmitted through a nonlinear medium:

Refractive index change mimics intensity pattern in the transverse plane



- The nonuniform phase shift causes the wavefront to curve
- Under certain conditions the medium can act as a lens with a power-dependent focal length

Use of SPM – fiber loop mirror

A simple way to realize a reflecting device (i.e. mirror) in fiber optics is to make a *fiber loop*.

 Use a 2x2 directional coupler where the ports on one side are connected to each other

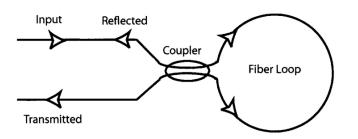
Let's first consider a *linear* fiber loop. We assume:

- Single mode fiber, no propagation losses and a maintained polarization state during propagation
- Low optical power so that nonlinear effects are negligible

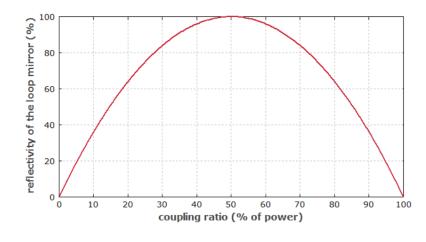
If the coupler is a 50:50 (3dB coupler):

• Interference conditions lead to all the injected power to go back to the input port: perfect reflector

If the power splitting ratio deviates from 50:50, one obtains less than 100% reflectance.



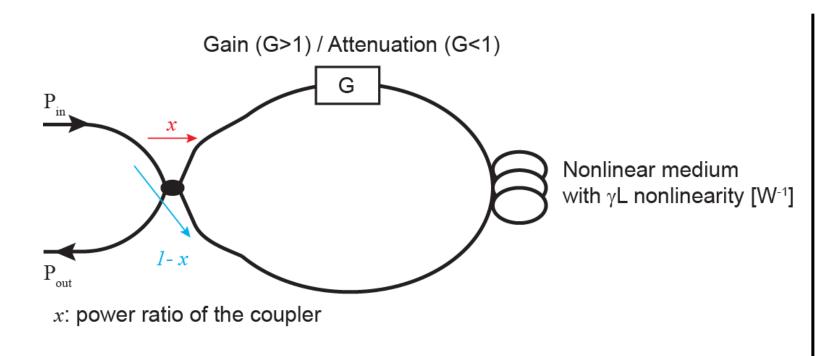
Schematic of an all-fiber Sagnac interferometer acting as a nonlinear optical loop mirror whose transmission depends on launched input power.

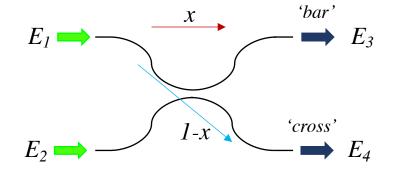


Nonlinear fiber loop mirror (NOLM)

Nonlinearly the effect of propagation will no longer be identical for the two paths if the power ratio of the 2 paths is not 50%

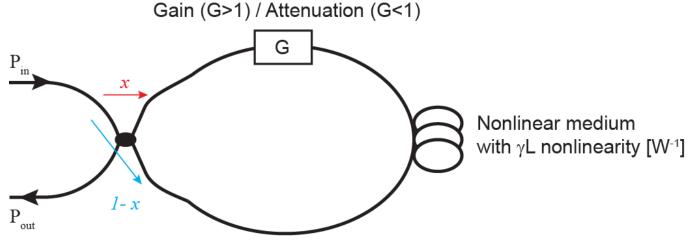
- The phase velocity is intensity dependent, therefore the CW and CCW will experience different phase shift: the device is phase sensitive without the need for an interferometer
- The NOLM is often used for it's thresholding capabilities





$$\begin{bmatrix} E_3 \\ E_4 \end{bmatrix} = \begin{bmatrix} \sqrt{x} & i\sqrt{1-x} \\ i\sqrt{1-x} & \sqrt{x} \end{bmatrix} \begin{bmatrix} E_1 \\ E_2 \end{bmatrix}$$

Nonlinear fiber loop mirror (NOLM)

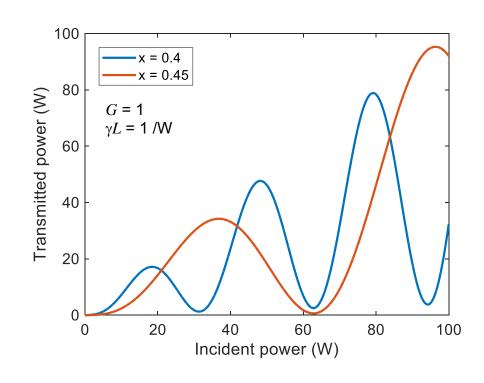


$$E_{out,CW} = E_{in}x\sqrt{G}\exp[j\gamma(xGP_{in})L]$$

$$E_{out,CCW} = E_{in}(1-x)\sqrt{G}\exp[j\gamma(1-x)P_{in}L + j\pi]$$

$$P_{out,tot} = P_{in}G[1 - 2x(1 - x)(1 + \cos{\{\gamma P_{in}L(1 - x - xG)\}})]$$

For
$$x$$
 = 0.5, the transmittance is: $T = \frac{P_{out,tot}}{P_{in}} = \frac{G}{2} \left[1 - \cos \left\{ \varphi_{NL} \left(\frac{1 - G}{2} \right) \right\} \right]$



Nonlinearities in optical fibers/waveguides

The lowest order of nonlinearity in silica glass (and most CMOS compatible materials) is of the third order due to non-resonant electronic process

• This leads to a relatively small nonlinear refractive index n_2

However waveguides have several advantages for nonlinear optics

- Strong beam confinement into a small effective area
- Long interaction length and possible small attenuation

This leads to much more nonlinear phase-shifts than using a bulk medium

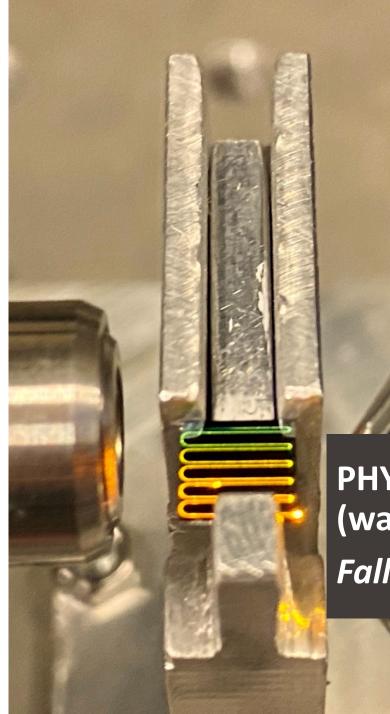
 \Rightarrow great advantage of waveguided nonlinear optics as the required power can be decreased.

Quiz

Silica has n_2 = 2.8 x 10⁻²⁰ m²/W at 1550 nm

What is the maximum nonlinear phase-shift experienced by a transform-limited Gaussian pulse of peak power 1 mW after

- a) Propagation in bulk where the focal point has a surface area of 1 μm^2 and effective propagation around the focal point of 0.5 cm (quite ambitious)
- b) In 100 km of optical fibre perfectly loss compensated with an effective area of 50 μ m².
- c) In 100 km of optical fibre with 0.2 dB/km of loss with an effective area of 50 μ m².



Optical Kerr effect

Module 3 – Nonlinear pulse propagation

PHYS-607: Nonlinear fibre (waveguide) optics

Fall 2022

■ Ecole Polytechnique Fédérale de Lausanne

Nonlinear pulse propagation

We have seen a (simplified) equation that enables us to solve the mode propagation inside a waveguide:

$$\frac{\partial A}{\partial z} + \beta_1 \frac{\partial A}{\partial t} + j \frac{\beta_2}{2} \frac{\partial^2 A}{\partial t^2} - \frac{\beta_3}{6} \frac{\partial^3 A}{\partial t^3} = j\gamma |A|^2 A - \frac{\alpha}{2} A$$

Changing the static time frame of reference for one that moves at the group velocity ($v_g = 1/\beta_1(\omega)$)

$$\frac{\partial A}{\partial z} + j \frac{\beta_2}{2} \frac{\partial^2 A}{\partial T^2} - \frac{\beta_3}{6} \frac{\partial^3 A}{\partial T^3} = j \gamma |A|^2 A - \frac{\alpha}{2} A \qquad {\tiny Nonlinear Schrödinger equation}$$

Here
$$T=t-\frac{z}{v_g}$$
 In silica this equation is valied when $T_{\rm FWHM}$ > 10ps.

Propagation regimes

There are different propagation regimes: depending on the initial pulse width T_0 and on the input peak power P_0 either dispersive or nonlinear effects may dominate upon propagation Let's consider 2 length scales:

$$L_D = \frac{T_o^2}{|\beta_2|}$$
 Dispersion length

$$L_{NL} = \frac{1}{\gamma P_0}$$
 Nonlinear length

- For $L \ll L_{NL}$ and $L \ll L_D$: fiber plays a passive role, no dispersive/nonlinear effects upon propagation
- For $L \ll L_{NL}$ but $L \sim L_D$: pulse evolution is governed by group velocity dispersion (GVD)
- For $L \ll L_D$ and $L \sim L_{NL}$: dispersion is negligible compared to nonlinear term (as long as pulse has a smooth spectrum) and pulse evolution is governed by SPM
- For L longer or comparable L_D and L_{NL} : interplay between GVD and SPM.

Dispersion induced pulse broadening

Let's first consider the sole contribution of group velocity dispersion with β_2

That is considering the waveguides as a linear optical medium

We define the unit amplitude envelope U: $A(z,t) = \sqrt{P_0} \exp\left(-\frac{1}{2}\alpha z\right) U(z,t)$

$$\frac{\partial A}{\partial z} + j \frac{\beta_2}{2} \frac{\partial^2 A}{\partial T^2} = -\frac{\alpha}{2} A \implies \frac{\partial U}{\partial z} = -j \frac{\beta_2}{2} \frac{\partial^2 U}{\partial T^2}$$

Dispersion is a frequency domain operation - we use Fourier transform method: $\frac{\partial}{\partial z} \iff -j\omega$

$$\frac{\partial}{\partial z} \Longleftrightarrow -j\omega$$

$$\frac{\partial \widetilde{U}}{\partial z} = j\omega^2 \frac{\beta_2}{2} \widetilde{U}$$

Solution is given by:

$$\widetilde{U}(z,\omega) = \widetilde{U}(0,\omega) \exp\left(j\omega^2 \frac{\beta_2}{2}z\right)$$
 with $\widetilde{U}(0,\omega) = \int_{-\infty}^{\infty} U(0,T) \exp(j\omega T) dT$

Example: Gaussian pulse of unit amplitude

Time:
$$U(0,T) = \exp\left(-\frac{T^2}{2T_0^2}\right)$$

Initial spectrum:
$$\widetilde{U}(0,\omega) = \sqrt{2\pi T_0^2} \exp\left(-\frac{T_0^2\omega^2}{2}\right)$$
 with $\Delta\omega_0 = \frac{1}{T_0}$
$$\int_{-\infty}^{\infty} \exp(-ax^2 - 2bx)dx = \sqrt{\frac{\pi}{a}} \exp\left(\frac{b^2}{a}\right)$$
 (1/e bandwidth)

Use:
$$\int_{-\infty}^{\infty} \exp(-ax^2 - 2bx) dx = \sqrt{\frac{\pi}{a}} \exp\left(\frac{b^2}{a}\right)$$

After propagation:
$$U(z,T) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \widetilde{U}(0,\omega) \exp\left(j\omega^2 \frac{\beta_2}{2} z - j\omega T\right) d\omega$$

$$U(z,T) = \frac{T_0}{\sqrt{T_0^2 - j\beta_2 z}} \exp\left[-\frac{T^2}{2(T_0^2 - j\beta_2 z)}\right]$$

Try to get this answer yourself!

Pulse broadening

The pulse envelope is evolving following the real and imaginary part of the solution:

$$U(z,T) = \frac{T_0}{\sqrt[4]{(T_0^2)^2 + (\beta_2 z)^2}} \exp\left[-\frac{T_0^2 T^2}{2[(T_0^2)^2 + (\beta_2 z)^2]}\right] \exp\left[-j\frac{\beta_2 z T^2}{2[(T_0^2)^2 + (\beta_2 z)^2]}\right] \exp\left[\frac{j}{2} \tan^{-1}\left(\frac{\beta_2 z}{T_0^2}\right)\right]$$

Peak amplitude

Gaussian profile

Frequency chirp

Phase correction

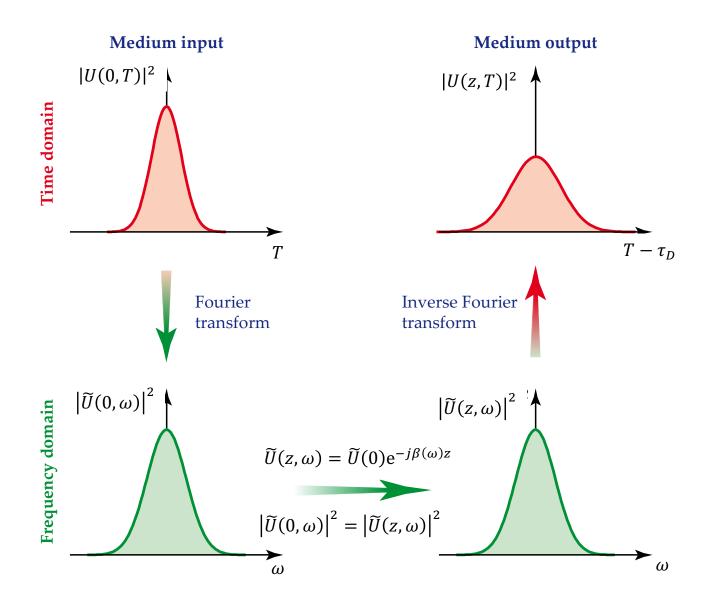
Pulse broadening:
$$\frac{T_1}{T_0} = \sqrt{1 + \left(\frac{\beta_2 z}{T_0^2}\right)^2} \equiv \sqrt{1 + \left(\frac{z}{L_D}\right)^2}$$

Phase shift:
$$\phi(z,T) = \frac{1}{2} \left[-\frac{\beta_2 z T^2}{[(T_0^2)^2 + (\beta_2 z)^2]} + \tan^{-1} \left(\frac{\beta_2 z}{T_0^2} \right) \right]$$

Try to plot the pulse profile, phase and chirp after various amount of propagation.

Chirp:
$$\delta\omega(z,T) = -\frac{d\phi(z,T)}{dT} = \frac{\beta_2 z}{[(T_0^2)^2 + (\beta_2 z)^2]}T$$

Effect of dispersion on Gaussian pulses



- The phase of the different spectral components is changed, however
 - Intensity spectrum remains unchanged.
 - The dispersion is a linear effect, thus does not modify the spectrum.
- The reordering of phases causes a temporal broadening of the pulse.
- This reordering also causes a linear chirp of the instantaneous frequency through the pulse.

Chirped Gaussian pulse propagation

For an unchirped Gaussian pulse, the dispersion induced broadening does not depend on the sign of the GVD parameter β_2 . This is not the case if the pulse is initially chirped ...

$$U(0,T) = \exp\left(-\frac{T^2}{2T_0^2}\right) \implies U(0,T) = \exp\left(-\frac{(1+jC)T^2}{2T_0^2}\right)$$

One can show that:
$$\widetilde{U}(0,\omega) = \sqrt{\frac{2\pi T_0^2}{1+jC}} \exp\left(-\frac{T_0^2\omega^2}{2(1+jC)}\right)$$
 With $\Delta\omega_0 = \frac{\sqrt{1+C^2}}{T_0}$ (1/e bandwidth)

Also that:
$$U(z,T) = \frac{1}{\sqrt{Q(z)}} \exp\left[-\frac{(1+jC)T^2}{2T_0^2 Q(z)}\right]$$
 With $Q(z) = 1 + (C-j)\frac{\beta_2 z}{T_0^2}$

And finally that :
$$\frac{T_1}{T_0} = \sqrt{\left(1 + \frac{C\beta_2 z}{T_0^2}\right)^2 + \left(\frac{\beta_2 z}{T_0^2}\right)^2}$$

$$C_1 = C + (1 + C^2) \frac{\beta_2 z}{T_0^2}$$
 Try to show this!

Summary of Gaussian pulse propagation

Unchirped pulse (C=0): broadens monotonically by the same amount in normal & anomalous dispersion regimes

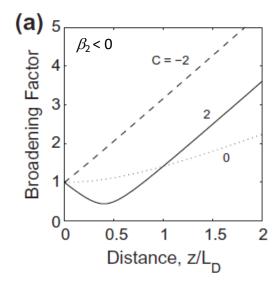
Chirped pulses behave differently depending on the sign of $\beta_2 C$:

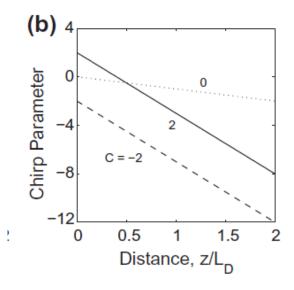
- $\beta_2 C > 0$: broadens monotonically faster than an unchirped pulse.
- $\beta_2 C < 0$: initially compresses up to z_{\min} , reaching a pulse width of T_1^{\min} , then broadens

$$z_{min} = \frac{|C|}{(1+C^2)}L_D$$

$$T_1^{min} = \frac{T_0}{\sqrt{1 + C^2}} = \frac{1}{\Delta \omega_0}$$

You can show this as well





Impact of higher order dispersion (β_3)

Still using the unit-amplitude envelope with attenuation previously defined, we have:

$$\frac{\partial A}{\partial z} + j \frac{\beta_2}{2} \frac{\partial^2 A}{\partial T^2} - \frac{\beta_3}{6} \frac{\partial^3 A}{\partial T^3} = -\frac{\alpha}{2} A \implies \frac{\partial U}{\partial z} = -j \frac{\beta_2}{2} \frac{\partial^2 U}{\partial T^2} + \frac{\beta_3}{6} \frac{\partial^3 U}{\partial T^3}$$

Following the same Fourier-transform technique, we get:

$$\widetilde{U}(z,\omega) = \widetilde{U}(0,\omega) \exp\left(j\omega^2 \frac{\beta_2}{2} z + j\omega^3 \frac{\beta_3}{6} z\right)$$

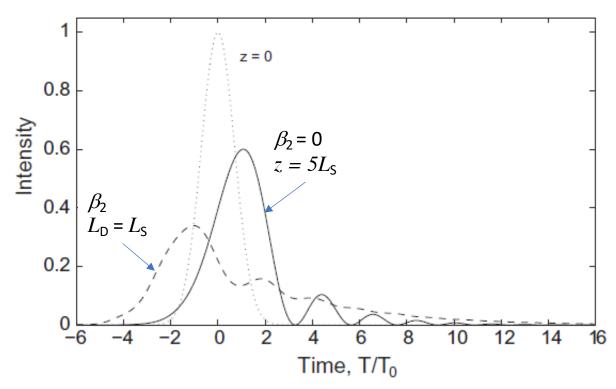
$$U(z,T) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \widetilde{U}(0,\omega) \exp\left(j\omega^2 \frac{\beta_2}{2} z + j\omega^3 \frac{\beta_3}{6} z - j\omega T\right) d\omega$$

Example of the Gaussian pulse

We can input once again $\widetilde{U}(0,\omega)$ of a Gaussian pulse and apply the IFT to get the pulse in time.

Pulse evolution will depend on the relative importance of β_2 and β_3 . We thus define a dispersion length associated with the TOD:

$$L_S = \frac{T_o^3}{|\beta_3|}$$



Pure nonlinear propagation

$$\frac{\partial A}{\partial z} = j\gamma |A|^2 A \implies A(z,T) = A(0,T) \exp(j\gamma |A|^2 z)$$

As seen before:

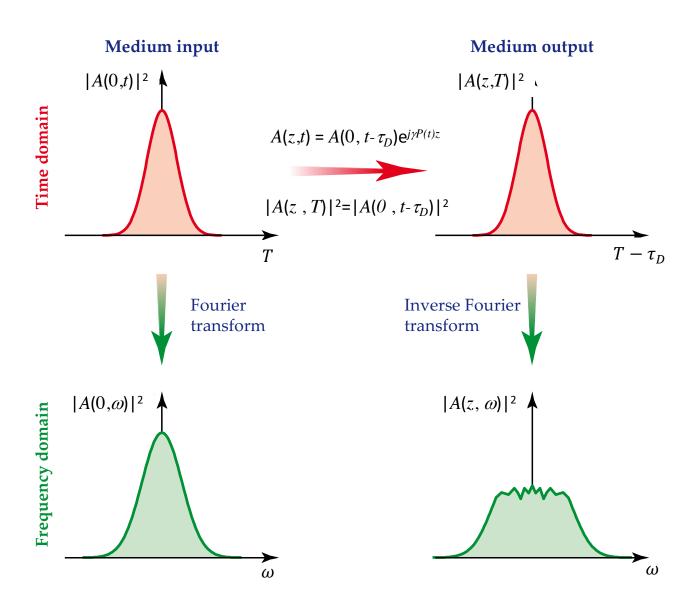
- Propagation in a loss-free nonlinear medium provides a phase shift that accumulates proportional to power and distance. Becomes significant after the nonlinear length
- The nonlinear phase shift induces a chirp:

$$\delta\omega = -\frac{\partial\phi_{NL}}{\partial T} = -\gamma z \frac{d|A|^2}{dT}$$

- The spectrum of a wave is broadened with propagation distance
- The maximum phase shift is

$$\phi_{NL,max} = \gamma P_0 L_{eff}$$

Kerr effect on Gaussian pulses



- The self phase modulation has no impact on the intensity temporal distribution, as any phase modulation. The pulse shape remains unchanged.
- However, this modulation causes a pulse spectral broadening, that is typical of a nonlinear effect.
- This modulation also induces a chirp of the instantaneous frequency through the pulse.

Summary of lengths

$$L_D = \frac{T_o^2}{|\beta_2|}$$

Distance for which
$$T_1 = \sqrt{2}T_0$$

$$L_S = \frac{T_o^3}{|\beta_3|}$$

Distance for which the effect of β_3 is significant

$$L_{NL} = \frac{1}{\gamma P_p}$$

Distance for which $\phi_{\rm NL,max}$ = 1 rad

$$L_{eff} = \frac{1 - \exp(-\alpha L)}{\alpha}$$

 $L_{eff} = \frac{1 - \exp(-\alpha L)}{\alpha}$ Distance for equivalent nonlinear phase-shift but in a lossless medium

Summary of 'single' regimes

	Dispersion only	Nonlinearity only
Phase shift $(e^{j\phi})$	$\phi_{disp}\left(L,\omega\right) = \begin{bmatrix} \frac{1}{2}\beta_2\left(\omega - \omega_0\right)^2 \\ +\frac{1}{6}\beta_3\left(\omega - \omega_0\right)^3 \\ + \dots \end{bmatrix} L$	$\phi_{\scriptscriptstyle NL}\left(L,T ight) = \gamma P L_{\scriptscriptstyle eff}$
Power vs. time	Temporal broadening and stretching	No changes to the power profile
PSD vs. frequency	No changes to the power spectrum	Spectral broadening and stretching

Propagation in nonlinear and dispersive media

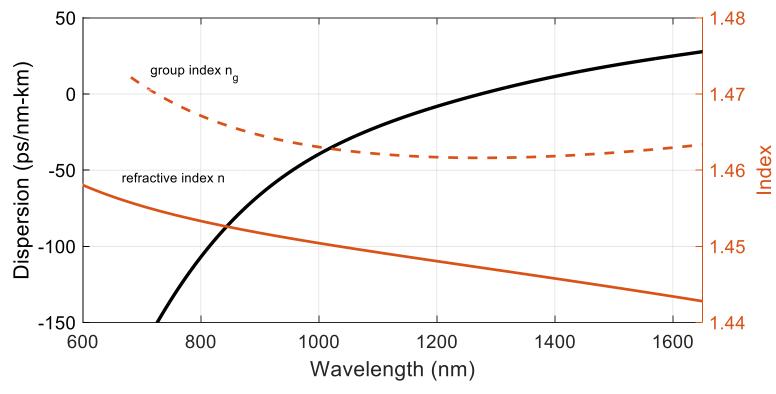
The group velocity dispersion β_2 can be either positive (normal dispersion) or negative (anomalous dispersion)

$$n^{2}(\omega) = 1 + \sum_{j=1}^{M} \frac{B_{j}\omega_{j}^{2}}{\omega_{j}^{2} - \omega}$$

$$n_g(\lambda) = n - \lambda \frac{dn}{d\lambda}$$

$$D = -\frac{\lambda}{c} \frac{d^2 n}{d\lambda^2}$$

$$\beta_2 = -\frac{\lambda^2}{2\pi c}D$$



The sign of the GVD is important when combined with nonlinear propagation

The N number (the soliton number)

The dimensionless N number is defined as:

$$N^2 = \frac{L_D}{L_{NL}} = \frac{\gamma P_p T_0^2}{|\beta_2|}$$

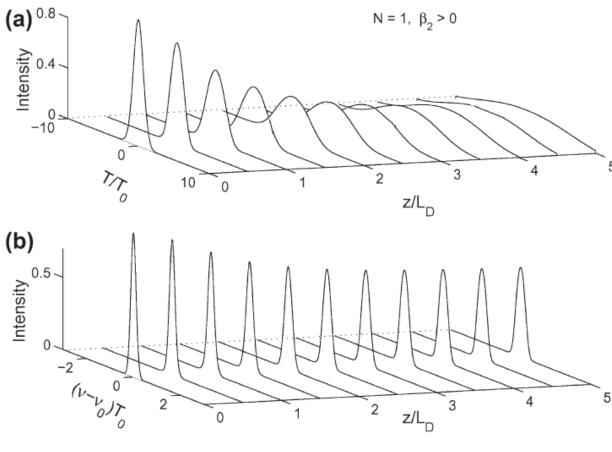
This parameter governs the relative importance of dispersion (GVD) and nonlinearity (SPM) on a pulse as it propagates

- For $N \ll 1$: dispersion dominates
- For $N \gg 1$: SPM dominates
- For $N \sim 1$: SPM and GVD play an equally important role

Propagation in normal dispersion ($\beta_2 > 0$) for N = 1

Normal dispersion and nonlinearity both chirp the center of the pulse in the same way

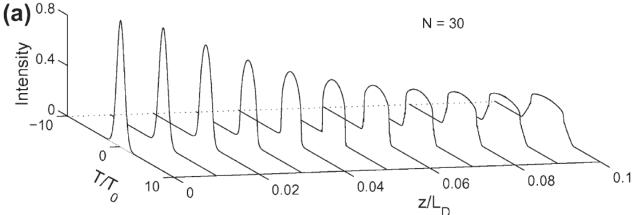
Positive chirp leading to a red shift

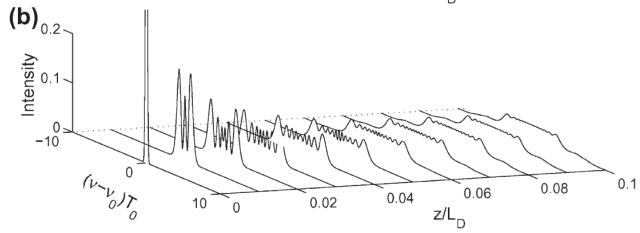


Propagation in normal dispersion ($\beta_2 > 0$) for N >> 1

The strong nonlinearity in normal dispersion can lead to optical wave breaking phenomenon.

- Rapid oscillations near the pulse edges accompanied by sidelobes in the spectrum
- Central part of the spectrum modified from pure SPM: minima are not as deep as expected.



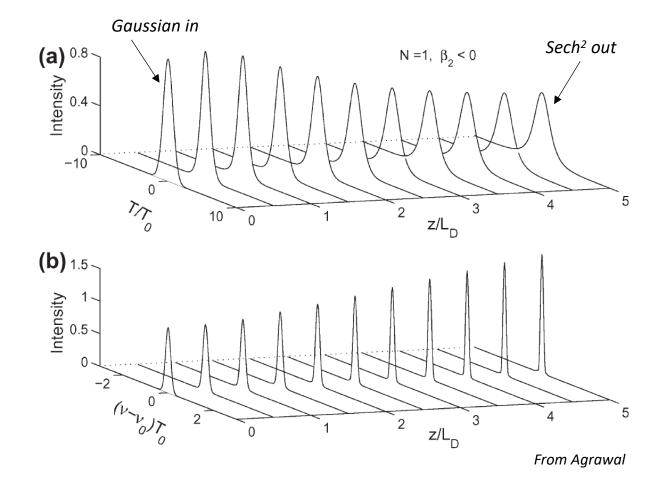


- Frequency-shifted light in the leading and trailing edges of a pulse overtakes unshifted light in the pulse tails.
- Mixing of these overlapping frequency components generates sidelobes on the pulse spectrum.

Propagation in anomalous dispersion (β_2 < 0) for N = 1

Anomalous dispersion and nonlinearity both chirp the pulse in opposite manners on every infinitesimal incremental propagating distance.

In equilibrium it leads to the soliton



Quiz

Nonlinear effects which are defined by the intensity dependent refractive index of the waveguide are called:

- a) Raman effect
- b) Dispersive effect
- c) Kerr effects
- d) Soliton effect